2311 Crystal structure and functional characterization of selenocysteine-containing glutathione peroxidase 4 suggests an alternative mechanism of peroxide reduction A. Borchert, J. Kalms, S. R. Roth, M. Rademacher, A. Schmidt, H. G. Holzhutter, H. Kuhn, P. Scheerer Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2018, 1863, 1095–1107, 10.1016/j.bbalip.2018.06.006
|
2310 An incretin-based tri-agonist promotes superior insulin secretion from murine pancreatic islets via PLC activation N. Khajavi, B. Finan, O. Kluth, T. D. Müller, S. Mergler, A. Schulz, G. Kleinau, P. Scheerer, A. Schürmann, T. Gudermann, M. H. Tschöp, H. Krude, R. D. DiMarchi, H. Biebermann Cellular Signalling 2018, 51, 13–22, 10.1016/j.cellsig.2018.07.006
|
2309 Binding, Thermodynamics, and Selectivity of a Non-peptide Antagonist to the Melanocortin-4 Receptor N. Saleh, G. Kleinau, N. Heyder, T. Clark, P. W. Hildebrand, P. Scheerer Frontiers in Pharmacology 2018, 9, 10.3389/fphar.2018.00560
|
2308 The Trace Amine-Associated Receptor 1 Agonist 3-Iodothyronamine Induces Biased Signaling at the Serotonin 1b Receptor J. Bräunig, J. Dinter, C. S. Höfig, S. Paisdzior, M. Szczepek, P. Scheerer, M. Rosowski, J. Mittag, G. Kleinau, H. Biebermann Frontiers in Pharmacology 2018, 9, 10.3389/fphar.2018.00222
|
2280 The arrestin-1 finger loop interacts with two distinct conformations of active rhodopsin M. Elgeti, R. Kazmin, A. S. Rose, M. Szczepek, P. W. Hildebrand, F. J. Bartl, P. Scheerer, K. P. Hofmann Journal of Biological Chemistry 2018, 293, 4403–4410, 10.1074/jbc.M117.817890
|
2260 Tracking the route of molecular oxygen in O2-tolerant membrane-bound [NiFe] hydrogenase J. Kalms, A. Schmidt, S. Frielingsdorf, T. Utesch, G. Gotthard, D. von Stetten, P. van der Linden, A. Royant, M. A. Mroginski, P. Carpentier, O. Lenz, P. Scheerer Proceedings of the National Academy of Sciences 2018, 115, 10.1073/pnas.1712267115
|
2161 Mechanistic insights into the role of prenyl-binding protein PrBP/δ in membrane dissociation of phosphodiesterase 6 B. M. Qureshi, A. Schmidt, E. Behrmann, J. Bürger, T. Mielke, C. M. T. Spahn, M. Heck, P. Scheerer Nature Communications 2018, 9, 10.1038/s41467-017-02569-y
|
2130 Structural mechanism of arrestin activation P. Scheerer, M. E. Sommer Current Opinion in Structural Biology 2017, 45, 160–169, 10.1016/j.sbi.2017.05.001
|
2129 Structural–Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work G. Kleinau, C. L. Worth, A. Kreuchwig, H. Biebermann, P. Marcinkowski, P. Scheerer, G. Krause Frontiers in Endocrinology 2017, 8, 1–25, 10.3389/fendo.2017.00086
|
2111 Double-flow focused liquid injector for efficient serial femtosecond crystallography D. Oberthuer, J. Knoška, M. O. Wiedorn, K. R. Beyerlein, D. A. Bushnell, E. G. Kovaleva, M. Heymann, L. Gumprecht, R. A. Kirian, A. Barty, V. Mariani, A. Tolstikova, L. Adriano, S. Awel, M. Barthelmess, K. Dörner, P. L. Xavier, O. Yefanov, D. R. James, G. Nelson, D. Wang, G. Calvey, Y. Chen, A. Schmidt, M. Szczepek, S. Frielingsdorf, O. Lenz, E. Snell, P. J. Robinson, B. Šarler, G. Belšak, M. Maček, F. Wilde, A. Aquila, S. Boutet, M. Liang, M. S. Hunter, P. Scheerer, J. D. Lipscomb, U. Weierstall, R. D. Kornberg, J. C. H. Spence, L. Pollack, H. N. Chapman, S. Bajt Scientific Reports 2017, 7, 44628– 10.1038/srep44628
|
2107 Divalent Cations Increase DNA Repair Activities of Bacterial (6-4) Photolyases H. Ma, F. Zhang, E. Ignatz, M. Suehnel, P. Xue, P. Scheerer, L. O. Essen, N. Krauß, T. Lamparter Photochemistry and Photobiology 2017, 93, 323–330, 10.1111/php.12698
|
2106 The crystal structure of Pseudomonas aeruginosa lipoxygenase Ala420Gly mutant explains the improved oxygen affinity and the altered reaction specificity J. Kalms, S. Banthiya, E. Galemou Yoga, M. Hamberg, H. G. Holzhutter, H. Kuhn, P. Scheerer Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2017, 1862, 463–473, 10.1016/j.bbalip.2017.01.003
|
2105 Crystal Structures of Bacterial (6-4) Photolyase Mutants with Impaired DNA Repair Activity F. Zhang, H. Ma, K. Bowatte, D. Kwiatkowski, E. Mittmann, H. Qasem, N. Krauß, X. Zeng, Z. Ren, P. Scheerer, X. Yang, T. Lamparter Photochemistry and Photobiology 2017, 93, 304–314, 10.1111/php.12699
|
1960 Structural and functional basis of phospholipid oxygenase activity of bacterial lipoxygenase from Pseudomonas aeruginosa S. Banthiya, J. Kalms, E. Galemou Yoga, I. Ivanov, X. Carpena, M. Hamberg, H. Kuhn, P. Scheerer Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2016, 1861, 1681–1692, 10.1016/j.bbalip.2016.08.002
|
1959 Insights into Basal Signaling Regulation, Oligomerization, and Structural Organization of the Human G-Protein Coupled Receptor 83 A. Müller, J. C. Berkmann, P. Scheerer, H. Biebermann, G. Kleinau PLOS ONE 2016, 11, 10.1371/journal.pone.0168260
|
1906 Ein Netzwerk aus hydrophoben Tunneln zum Transport gasförmiger Reaktanten in einer O2-toleranten, membrangebundenen [NiFe]- Hydrogenase, aufgedeckt durch Derivatisierung mit Krypton J. Kalms, A. Schmidt, S. Frielingsdorf, P. van der Linden, D. von Stetten, O. Lenz, P. Carpentier, P. Scheerer Angewandte Chemie 2016, 128, 5676–5680, 10.1002/ange.201508976
|
1905 Krypton Derivatization of an O2-Tolerant Membrane-Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport J. Kalms, A. Schmidt, S. Frielingsdorf, P. van der Linden, D. von Stetten, O. Lenz, P. Carpentier, P. Scheerer Angewandte Chemie International Edition 2016, 55, 5586–5590, 10.1002/anie.201508976
|
1904 Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association T. Sprink, D. J. F. Ramrath, H. Yamamoto, K. Yamamoto, J. Loerke, J. Ismer, P. W. Hildebrand, P. Scheerer, J. Bu rger, T. Mielke, C. M. T. Spahn Science Advances 2016, 2, 10.1126/sciadv.1501502
|
1777 Key Amino Acids in the Bacterial (6-4) Photolyase PhrB from Agrobacterium fabrum D. Graf, J. Wesslowski, H. Ma, P. Scheerer, N. Krauß, I. Oberpichler, F. Zhang, T. Lamparter PLOS ONE 2015, 10, 10.1371/journal.pone.0140955
|
1776 Role of Structural Dynamics at the Receptor G Protein Interface for Signal Transduction A. S. Rose, U. Zachariae, H. Grubmüller, K. P. Hofmann, P. Scheerer, P. W. Hildebrand PLOS ONE 2015, 10, 10.1371/journal.pone.0143399
|
1745 Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA H. Yamamoto, M. Collier, J. Loerke, J. Ismer, A. Schmidt, T. Hilal, T. Sprink, K. Yamamoto, T. Mielke, J. Bürger, T. R. Shaikh, M. Dabrowski, P. W. Hildebrand, P. Scheerer, C. M. Spahn The EMBO Journal 2015, 34, 3042–3058, 10.15252/embj.201592469
|
1697 Resonance Raman Spectroscopic Analysis of the [NiFe] Active Site and the Proximal [4Fe-3S] Cluster of an O2 -Tolerant Membrane-Bound Hydrogenase in the Crystalline State E. Siebert, Y. Rippers, S. Frielingsdorf, J. Fritsch, A. Schmidt, J. Kalms, S. Katz, O. Lenz, P. Scheerer, L. Paasche, V. Pelmenschikov, U. Kuhlmann, M. A. Mroginski, I. Zebger, P. Hildebrandt The Journal of Physical Chemistry B 2015, 119, 13785–13796, 10.1021/acs.jpcb.5b04119
|
1696 The Activation Pathway of Human Rhodopsin in Comparison to Bovine Rhodopsin R. Kazmin, A. Rose, M. Szczepek, M. Elgeti, E. Ritter, R. Piechnick, K. P. Hofmann, P. Scheerer, P. W. Hildebrand, F. J. Bartl Journal of Biological Chemistry 2015, 290, 20117–20127, 10.1074/jbc.M115.652172
|
1695 Structure-based biophysical analysis of the interaction of rhodopsin with G protein and arrestin. M. E. Sommer, M. Elgeti, P. W. Hildebrand, M. Szczepek, K. P. Hofmann, P. Scheerer Methods in Enzymology 2015, 556, 563–608, 10.1016/bs.mie.2014.12.014
|
1671 Structural Snapshots of Actively Translating Human Ribosomes E. Behrmann, J. Loerke, T. Budkevich, K. Yamamoto, A. Schmidt, P. Penczek, M. Vos, J. Bürger, T. Mielke, P. Scheerer, C. T. Spahn Cell 2015, 161, 845–857, 10.1016/j.cell.2015.03.052
|
1670 The Class III Cyclobutane Pyrimidine Dimer Photolyase Structure Reveals a New Antenna Chromophore Binding Site and Alternative Photoreduction Pathways P. Scheerer, F. Zhang, J. Kalms, D. von Stetten, N. Krauß, I. Oberpichler, T. Lamparter Journal of Biological Chemistry 2015, 290, 11504–11514, 10.1074/jbc.M115.637868
|
1493 A Prokaryotic (6-4) photolyase with a DMRL chromophore and an iron–sulfur cluster T. Lamparter, F. Zhang, D. Graf, J. Wesslowski, I. Oberpichler, V. Schuenemann, N. Krauß, P. Scheerer Encyclopedia of Inorganic and Bioinorganic Chemistry Robert A. Scott Wiley Online Library 2014, 1–13, 10.1002/9781119951438.eibc2271
|
1420 Crystal structure of a common GPCR-binding interface for G protein and arrestin M. Szczepek, F. Beyrière, K. P. Hofmann, M. Elgeti, R. Kazmin, A. Rose, F. J. Bartl, D. von Stetten, M. Heck, M. E. Sommer, P. W. Hildebrand, P. Scheerer Nature Communications 2014, 5, 4801– 10.1038/ncomms5801
|
1417 Position of Transmembrane Helix 6 Determines Receptor G Protein Coupling Specificity A. S. Rose, M. Elgeti, U. Zachariae, H. Grubmüller, K. P. Hofmann, P. Scheerer, P. W. Hildebrand Journal of the American Chemical Society 2014, 136, 11244–11247, 10.1021/ja5055109
|
1396 Reversible [4Fe-3S] cluster morphing in an O2-tolerant [NiFe] hydrogenase S. Frielingsdorf, J. Fritsch, A. Schmidt, M. Hammer, J. Löwenstein, E. Siebert, V. Pelmenschikov, T. Jaenicke, J. Kalms, Y. Rippers, F. Lendzian, I. Zebger, C. Teutloff, M. Kaupp, R. Bittl, P. Hildebrandt, B. Friedrich, O. Lenz, P. Scheerer Nature Chemical Biology 2014, 10, 378–385, 10.1038/nchembio.1500
|
1070 Crystal structure of pre-activated arrestin p44 Y. J. Kim, K. P. Hofmann, O. P. Ernst, P. Scheerer, H. W. Choe, M. E. Sommer Nature 2013, 497, 142–146, 10.1038/nature12133
|
1068 Crystal structure of a prokaryotic (6-4) photolyase with an Fe-S cluster and a 6,7-dimethyl-8-ribityllumazine antenna chromophore F. Zhang, P. Scheerer, I. Oberpichler, T. Lamparter, N. Krauß Proceedings of the National Academy of Sciences of the United States of America 2013, 110, 7217–7222, 10.1073/pnas.1302377110
|
872 The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. J. Fritsch, P. Scheerer, S. Frielingsdorf, S. Kroschinsky, B. Friedrich, O. Lenz, C. M. T. Spahn Nature 2011, 479, 249–252, 10.1038/nature10505
|
61 Resonanz-Raman-spektroskopische Untersuchung der Chromophorheterogeneität und Photokonversion von Phytochromkristallen und -lösungen D. von Stetten, M. Günther, P. Scheerer, D. H. Murgida, M. A. Mroginski, N. Krauss, T. Lamparter, J. Zhang, D. M. Anstrom, R. D. Vierstra, K. T. Forest, P. Hildebrandt Angewandte Chemie 2008, 120, 4831–4833, 10.1002/ange.200705716
|
60 Chromophore heterogeneity and photoconversion in phytochrome crystals and solutions studied by resonance Raman spectroscopy D. von Stetten, M. Günther, P. Scheerer, D. H. Murgida, M. A. Mroginski, N. Krauss, T. Lamparter, J. Zhang, D. M. Anstrom, R. D. Vierstra, K. T. Forest, P. Hildebrandt Angewandte Chemie International Edition 2008, 47, 4753–4755, 10.1002/anie.200705716
|
45 Elucidation of the chromophore structure in phytochrome - a combined resonance Raman spectroscopic and theoretical approach D. von Stetten, M. Günther, S. Kaminski, P. Scheerer, N. Krauss, T. Lamparter, K. T. Forest, R. D. Vierstra, W. Gärtner, D. H. Murgida, M. A. Mroginski, P. Hildebrandt Proceedings of the XXIst International Conference on Raman Spectroscopy Rob Withnall, Babur Z. Chowdhry IM Publications, Charlton, Chichester 2008, 127–129,
|
39 Chromophore structure of cyanobacterial phytochrome Cph1 in the Pr state: reconciling structural and spectroscopic data by QM/MM calculations M. A. Mroginski, D. von Stetten, F. Velazquez Escobar, H. M. Strauss, S. Kaminski, P. Scheerer, M. Günther, D. H. Murgida, P. Schmieder, C. Bongards, W. Gärtner, J. Maillet, J. Hughes, L. O. Essen, P. Hildebrandt Biophysical Journal 2009, 96, 4153–4163, 10.1016/j.bpj.2009.02.029
|